• 指南与共识 Guidelines and consensus •

淋巴管畸形综合诊治中国专家共识

中国妇幼保健协会儿童血管瘤与脉管畸形专业委员会,中国医师协会介入医师分会妇儿介入专家工作组,中国血管瘤血管畸形协作网专家委员会

【摘要】 淋巴管畸形(lymphatic malformations,LMs)是一种常见的先天性脉管畸形,好发于儿童。LMs除了有毁容及致残风险外,还会对邻近器官造成影响,严重时可危及生命。近年来,随着临床对该疾病认识不断深入,各级医疗机构积累了大量诊疗经验。为规范临床诊疗行为,提高 LMs 综合诊治水平,中国妇幼保健协会儿童血管瘤与脉管畸形专业委员会、中国医师协会介入医师分会妇儿介入专家工作组、中国血管瘤血管畸形协作网专家委员会特组织国内专家撰写该共识。通过多次深入探讨,查阅相关文献证据,并充分结合临床实践经验,已就 LMs 发病机制、病理生理、分类和分型、诊断和治疗等达成共识性意见,以供临床参考应用。

【关键词】 淋巴管畸形;综合诊治;专家共识

中图分类号:R551.2 文献标志码:A 文章编号:1008-794X(2025)-006-0559-08

Chinese expert consensus on comprehensive diagnosis and treatment of lymphatic malformations Pediatric Hemangioma and Vascular Malformation Committee, Chinese Maternal and Child Health Association; Maternal and Child Interventional Expert Working Group, Chinese College of Interventionalists; Chinese Hemangioma and Vascular Malformation Network Expert Committee

Corresponding author: GUO Lei, E-mail: etjrxgl@hotmail.com

[Abstract] Lymphatic malformations (LMs) are common congenital vascular malformations that predominantly occur in children. In addition to causing disfigurement and disability, LMs may also affect adjacent organs and, in severe cases, have life-threatening risks. Over the past few years, as clinical understanding of this condition has deepened, healthcare institutions at various levels have accumulated extensive experience in diagnosing and treating LMs. To standardize clinical practice and improve the overall quality of diagnosis and treatment for LMs, domestic experts of the above mentioned organizations collaborated to draft this consensus. After multiple rounds of detailed discussion, a thorough review of relevant literature, and integration of clinical practice experience, a consensus is formulated in the pathogenesis, pathophysiology, classification, diagnosis, and treatment of LMs, serving as a guideline for clinical practice.

[Key words] lymphatic malformations; comprehensive diagnosis and treatment; expert consensus

淋巴管畸形(lymphatic malformations,LMs)是一种先天性淋巴系统发育畸形,发病率为 1/4 000~1/2 000,属低流速脉管畸形[1]。该病主要见于新生儿或低龄儿童,多在 2 岁以前发病,无明显性别差异。LMs 可发生在具有淋巴管网的任何身体部位,头颈

部最为常见,约占75%,其次为腋窝、纵隔及四肢等部位^[2]。从病变本质看,LMs 主要由胚胎发育阶段淋巴管从主静脉出芽过程中发生体细胞 PIK3CA 突变导致淋巴管过度增殖、异常扩张,最终淋巴管网络发育紊乱所致^[3]。由于本病属于淋巴管发育畸

DOI:10.3969/j.issn.1008-794X.2025.06.001

基金项目:国家卫生健康委能力建设和继续教育中心课题(GWJJ2023100303),国家外国专家个人类项目(111000609020248003),山东省自然科学基金(ZR2022MH236),山东省儿童健康与疾病临床医学研究中心项目(RC003),"海右计划"产业领军人才专项经费资助项目(济人才办发 2024-5 号)

通信作者:郭 磊(山东大学附属儿童医院) E-mail:etjrxgl@hotmail.com

形,并非恶性肿瘤,未受到足够重视和关注,故高质量临床研究极少,缺乏统一诊治标准。本共识通过国内专家组围绕 LMs 综合诊治标准和规范进行讨论,达成了统一意见。

1 发病机制

LMs 发病机制尚未完全明确,目前研究认为多 种基因与调节因子协同作用于淋巴管生成的调控网 络,共同驱动 LMs 发生与发展。大多数 LMs 在 PIK3CA 中具有类似的体细胞点突变,所以 PI3K/ AKT/mTOR 信号通路为 LMs 发病机制的研究热 点[4-5]。大多数 LMs 由 PIK3CA 基因突变引起,其 编码 p110α 亚单位磷脂酰肌醇 3 激酶 (phosphoinositide 3-kinase, PI3K), 通过 AKT/ mTOR 信号通路参与调控淋巴管内皮细胞增殖、 迁移、存活和血管生成等过程,从而影响淋巴管内 皮细胞功能[6-7]。目前常见突变位点为螺旋结构 域(如 E542K 和 E545K)或激酶结构域(如 H1047R 和 H1047L)。此外, PI3K/AKT/mTOR 信号通路上游因子,如 VEGFR3 及其配体 VEGFC 和 VEGFCD 也参与了 LMs 发育过程。缺氧诱导 因子(HIF)-1α过表达可上调 VEGFR3,促进淋巴 管内皮细胞(lymphatic endothelial cells, LEC)增 殖、迁移以及淋巴管异常成形,从而导致 LMs 发生[8-11]。

2 病理生理

LMs 发生始于胚胎期,静脉丛中胚层首先分化形成原始淋巴囊结构,随后逐步成熟,形成具备功能的毛细淋巴管,这些毛细淋巴管通过分支吻合构建成网络,最终层级形成从小到大的完整淋巴管系统^[12]。在此过程中,淋巴干缺失成为导致淋巴管发生非恶性异常生长与扩张的关键因素,进而引发 LMs^[13-14]。

LMs 病变可限于皮肤真皮和表皮或黏膜上皮和固有层,或可延伸至深层软组织、内脏或骨。其病理学特征通常表现为不同程度的淋巴管扩张、壁薄、内壁衬以内皮细胞、腔内大量淋巴液聚集,其周围可伴有脂肪细胞、成纤维细胞、肌细胞、白细胞等[12]。LMs 患儿 LEC 可通过免疫组织化学方法进行鉴别,其检测的抗体包括抗 Prox-l、Podoplanin、VECFR-3、LYVE-1。在 LMs 中 CD34 可呈弱阳性表达或无表达。

3 分类及分型

根据国际脉管性疾病研究学会(International Society for the Study of Vascular Anomalies, ISSVA)最新分类,LMs分为普通型LMs、泛发性淋 巴管异常(generalized lymphatic anomaly, GLA)、 卡波西样淋巴管瘤病(Kaposiform lymphangiomatosis, KLA)、Gorham 综合征中的 LMs(LMs in Gorham-Stout disease, GSD)、管道型 淋巴管畸形(channel type LMs, central conducting lymphatic anomaly, CCLA)、"获得性"进行性淋巴 管 异 常 (" acquired " progressive lymphatic anomaly)/获得性进行性"淋巴管瘤"(acquired progressive "lymphangioma")以及原发性淋巴水肿 等[15]。最常见为普通型 LMs,主要指囊状 LMs,常 为多囊性,单囊者少见。根据囊腔大小,普通型 LMs 分为巨囊型(≥2 cm³)、微囊型(<2 cm³)和混 合型等3种[12]。巨囊型病变一般包含大小不等的 多个囊腔,微囊型病变则类似蜂巢样结构,混合型病 变包含以上两种病变形态。临床上,微囊型病变较 巨囊型病变治疗困难,且复发率更高。本共识仅为 普通型 LMs 提供参考意见。

4 诊断

4.1 临床表现

LMs 临床症状多较典型,因此依据病史及影像学检查基本可以确诊。LMs 对患儿健康与生活质量的影响,主要取决于LMs 部位及病变范围。体表的巨囊型LMs 大多数表现为触之有波动感的包块。在急性感染、外伤、激素变化、囊内出血时会导致LMs 显著增大。微囊型LMs 病灶一般表现为实质性肿物,皮肤黏膜上可伴有充满液体的滤泡。广泛累及颌面部软组织、舌体、口底等部位的LMs,可出现严重的美观问题及功能障碍[16-17]。气管周围LMs 压迫气管时,可出现致命性呼吸困难。尤其是弥漫性浸润性生长的LMs,可对患儿健康及生存质量造成严重影响。

4.2 影像学诊断

4.2.1 彩色多普勒超声 彩色多普勒超声(colour Doppler ultrasonography, CDU)为 LMs 首选筛查 手段。LMs 表现为囊状,呈单房或多房囊状无回声,边界清楚,囊壁较薄,囊内淋巴液无循环流动,故 CDU 不能探及血流信号,偶可见无回声内有散在分布点状高回声,挤压探头囊内容物有流动感;间隔、

囊壁及周边可探及血流信号频谱,系滋养血管;微囊型淋巴管畸形可表现为皮下脂肪样回声,可见细小而无回声的狭缝或囊腔。

4.2.2 MRI MRI 检查能提供可靠的客观图像, 通过增强扫描可有效区分淋巴管和血管,从而精确 定位病变并分析其与周围组织的关系。巨囊型和混 合型 LMs 通常表现为单房或多房病变,其内部可见 线样分隔影,病变常表现为 T1、T2 加权成像高信 号,以压脂序列显示最优。微囊型 LMs 形态多不规 则,信号特征与巨囊型和混合型相似,但其内部可见 大量小囊性病变,部分可融合成较大囊腔。无论是 巨囊型、混合型,还是微囊型 LMs,囊壁及分隔呈轻 度强化或不强化,囊腔不强化。LMs 常因出血导致 病灶信号复杂多变,囊内信号在出血的不同阶段呈 现动态变化。液平面是新鲜出血与陈旧出血混合表 现,T2 加权成像中表现为上层高信号、下层低信号, 这一影像特征对 LMs 诊断具有重要价值。此外,淋 巴组织位于组织间隙内,因此 LMs 沿组织间隙生长 是其典型表现,在MRI中病变呈匍匐状生长特征。 4.2.3 CT CT 表现为单房或多房病变,呈类圆 形/不规则形及分叶状低密度或等密度影,部分病灶 可见分隔影,增强后囊内容物不强化,分隔及囊壁呈 点状、条索状及网格状强化。合并出血时 CT 值升 高,部分可见液-液平面。目前,为避免或减少婴幼 儿放射暴露,CT 一般不作为 LMs 常规检查。

4.3 鉴别诊断

LMs 多数虽通过临床症状、影像学检查较容易诊断,但仍需与血肿、鳃裂畸形、甲状舌管囊肿、舌下腺囊肿、静脉畸形等疾病相鉴别。

4.3.1 皮下血肿 与淋巴管瘤伴出血相鉴别。皮下血肿通常是由外伤或血管损伤引起的出血所致。其发生位置深浅不一,皮肤颜色亦表现不同,可伴有局部肿胀、疼痛,一般情况下疼痛和其他症状随时间推移逐渐改善。血肿行影像学检查,边界可清或不清,其病灶内一般无分隔出现。淋巴管瘤伴出血表现为突然出现的包块或原有肿块快速增大,伴或不伴外伤史。影像学检查一般边界清晰,并多见薄壁分隔,囊内常见液平面。

4.3.2 囊肿 位于头颈部的 LMs 与囊肿有时难以 区别,尤其是头颈部囊肿,如鳃裂畸形(鳃源性囊肿、 梨状窝囊肿)、甲状舌管囊肿及舌下腺囊肿等。鳃源 性囊肿是胚胎时期鳃裂发育异常所致先天性畸形,多位于下颌角下方、胸锁乳突肌前缘,在患侧咽侧壁 区可探及瘘口;当合并上呼吸道感染时,病灶体积可

快速增大,穿刺可抽出清亮、黄色或棕色囊液[18]。 梨状窝囊肿为出生时多见于左侧颈部单囊性肿物, 可反复出现,进食后增大,甚至有气道压迫症状,穿 刺可抽出唾液及奶汁,影像学检查可见囊内出现气 液平。甲状舌管囊肿为一种常见的颈部先天性病 变,可在各年龄段发病,但儿童群体更为多见,好发 于颈中线或中线旁,沿甲状舌管走行。甲状舌管囊 肿可随吞咽上下移动,合并感染时囊肿可快速增大, 穿刺可抽出淡黄色黏稠液体。舌下腺囊肿则分为单 纯型和口外型。单纯型表现为口底半透明、浅蓝色 的柔软包块,具有波动感;口外型则表现为下颌区柔 软肿物,与皮肤无粘连。其囊液为蛋清样黏稠液体。 4.3.3 静脉畸形 静脉畸形多在出生时即可发现, 病灶皮温正常、无搏动感,具有压缩性,听诊无杂音, 体位移动试验阳性[19]。浅表静脉畸形病灶常呈青 紫色,可发生于皮肤或黏膜;位置较深的静脉畸形多 表现为局部包块,皮肤、黏膜颜色改变不明显。头颈 部静脉畸形可引起明显的外观改变,甚至影响患者 语言及呼吸等功能。四肢静脉畸形可导致疼痛、肿 胀及运动功能障碍等。在部分病灶内可触及大小不 一、质地坚硬的静脉石。在 MRI 检查中, T1 加权像 上显示为等信号实性团块,而 T2 加权像上则表现 为均匀的高信号团块影,增强扫描呈明显强化。

4.4.4 其他 LMs 除与上述疾病鉴别诊断外,仍需与 I 型神经纤维瘤病、半侧颜面部浸润性脂肪增殖症、恶性淋巴瘤、唇黏膜涎腺炎症等相鉴别。如存在诊断困难,可行穿刺活检以提高诊断准确性。

5 术前评估

术前评估内容包括病史、临床表现、影像学检查、实验室检查等。其中,病史采集应注意询问患者是否有 LMs 手术史或硬化治疗史。建议术前行超声、MRI 检查,了解病变形态、范围及其周围组织关系等情况,以协助确定合理的治疗方案。对于头颈部 LMs,尤其是累及呼吸道时,需对其进行呼吸道评估。若呼吸道梗阻明显,可根据具体情况选择术前预防性气管切开或术后保留气管插管,以保证患者正常通气。

6 术前准备

①实验室及常规检查:血常规、生化指标(肝肾功能指标等)、病毒血清学检查(乙型肝炎、丙型肝炎、人类免疫缺陷病毒、梅毒)、血型、心电图以及尿、粪常规,凝血功能等。②影像学检查:体表超声,初

步了解 LMs 范围、形态等; MRI 检查, 评估病变形态、范围及其与周围组织关系。③签署知情同意书。④术区标记、备皮, 开通静脉通道。⑤建议配备超声等相关引导仪器, 但不作为必需条件。⑥麻醉准备:全身麻醉患者术前禁食禁饮, 局部麻醉患者术前局部外敷麻醉药物或术中局部注射麻醉药物。⑦准备头皮针或穿刺针、引流管、注射器若干以及硬化剂。⑧手术切除必备物品, 以及根据病情的其他个性化治疗设备与物品, 比如消融设备等。⑨必要的抢救药品、物品及仪器。

7 治疗

LMs 治疗需根据病变部位、范围、分型等具体情况制订个性化治疗策略。主要治疗方法包括硬化治疗、手术切除、药物等[20-22]。

7.1 硬化治疗

硬化治疗 LMs 基本原理:药物与囊壁内皮细胞表面的细胞膜相互作用,破坏囊壁内皮细胞,使其萎缩、变性,失去分泌功能并闭合囊腔,最终达到治疗目的^[23]。硬化治疗作为一种微创技术,具有创伤小、安全、操作简便、可重复性强等优势,目前逐渐成为一线治疗方案。但在硬化剂最佳疗效与并发症控制方面,目前学术界尚未达成共识,存在地域性、医院间及患者群体间差异^[24]。常用的硬化剂有博来霉素/平阳霉素、聚桂醇/聚多卡醇、无水乙醇、OK-432、多西环素等。

7.1.1 博来霉素/平阳霉素 ①博来霉素最初因抗 肿瘤药物被人熟知。除了通过抑制胸腺嘧啶核苷渗 入 DNA, 使 DNA 单链断裂, 阻止 DNA 合成之外, 还可使血管内皮细胞产生中等程度炎症反应,对生 长繁殖活跃的组织尤为明显[25-26]。其用于治疗 LMs 的机制是注射药物后可破坏囊腔内上皮细胞, 导致结缔组织增生,形成瘢痕性粘连闭锁,同时可通 过阻碍 DNA 合成使 LMs 消失或使其发展受抑制, 达到治疗目的[27-28]。博来霉素配制:将1.5万单位 博来霉素粉末(相当于 15 USP 博来霉素单位)与 15 mL 0.9%氯化钠溶液,或 15 mL 对比剂,或 14 mL 注射用水/对比剂+1 mL 地塞米松混合,最终浓度为 1 USP/mL,建议使用剂量为≤1 USP/kg,最大剂量 为每次 15 USP,累积剂量应控制在 300 USP 以内。 ②平阳霉素是一种从平阳链霉菌中提取的有机化合 物,其化学结构与博来霉素有高度相似性,主要区别 在于平阳霉素分子结构中缺失了末端胺基。瘤体内 注射平阳霉素能够迅速抑制淋巴细胞 DNA 合成和

切断 DNA 链^[29]。同时,其还具有抑制淋巴管内皮细胞增殖作用,机制与博来霉素相同,使组织纤维化致囊腔闭合,达到治疗 LMs 目的。平阳霉素配制:在成年患者中,平阳霉素浓度为 2 mg/mL(8 mg 平阳霉素 + 2% 利多卡因 1 mL + 注射用水 2 mL/对比剂 2 mL + 地塞米松 1 mL);儿童中,平阳霉素浓度为 2 mg/mL(8 mg 平阳霉素 + 注射用水 3 mL/对比剂 3 mL + 地塞米松 1 mL)。推荐使用剂量:8~10 mg/m²或 0.2~0.4 mg/kg,每次治疗总量 \leq 8 mg,新生儿及幼龄儿童需酌情减量。肺毒性发生与剂量密切相关,当总量超过 160 mg,肺纤维化等风险将明显增加,一般用于治疗 LMs 的总剂量不超过 100 mg^[29]。

7.1.2 泡沫硬化剂(聚桂醇/聚多卡醇) 聚桂醇/ 聚多卡醇注射液是目前临床常用的新型清洁剂类硬 化剂,常以泡沫硬化剂方式使用,注射后无化学性刺 激,不产生剧烈疼痛,术后没有醉酒样反应等其他不 良反应,具有疗效确切、安全性好等临床优势[30-33]。 泡沫硬化剂治疗 LMs 机制是:化学作用刺激囊壁, 使囊壁内皮细胞变性、脱水、坏死,并产生无菌性炎 症,纤维组织增生,使囊内表面张力降低,减少淋巴 液生成,使囊腔粘连、闭合,逐步吸收并消失[34]。其 特点在于治疗中泡沫硬化剂可产生表面张力,填充 囊腔,均匀地接触囊壁内皮不被稀释,药物停留时间 长等。临床多采用 Tessari 技术[35] 制备泡沫硬化 剂,用螺口注射器按1:4~1:3比例分别抽取硬化 剂、空气或 CO。,两支注射器端口经三通连接后快速 来回抽吸20次左右,关小阀门后再次抽吸10次,以 此制备更加均匀、细腻的泡沫硬化剂。使用剂量: 2 mg/kg,最多不超过 100 mg(10 mL)。

7.1.3 无水乙醇 无水乙醇凭借显著的脱水与剥蚀效能,在多种疾病临床治疗中展现出优良效果。无水乙醇已广泛应用于囊性病变治疗,其机制为破坏囊壁内皮细胞,蛋白质凝固变性,抑制囊液分泌,从而达到囊腔萎缩或完全消失目的[36-37]。在影像引导下,注射无水乙醇硬化治疗巨囊型 LMs 能获得良好效果和安全性。在具体操作中,无水乙醇注射量通常设定为抽出囊液量的 1/3~1/2,建议最大使用剂量不超过 1.0 mL/kg,儿童不超过 0.5 mL/kg;注射无水乙醇前,一般需静脉注入不超过 0.1 mg/kg 地塞米松,以减小术后肿胀和疼痛[38]。

7.1.4 OK-432 OK-432 为一种经青霉素 G 钾盐处理、失去溶血性链球菌 S-产物性能而取得的人源性 A 族链球菌 Ⅲ型、低毒 Su 株的干培养混合物。

国产同类药物为沙培林。该药最初作为非特异性免疫增强剂应用于恶性肿瘤,特别是恶性胸、腹水治疗。1987年其被用于小儿 LMs 治疗,取得较好临床疗效。OK-432作用机制是通过刺激淋巴管内皮细胞产生无菌性炎症反应,促使纤维组织增生、淋巴管闭塞而达到缩小病变目的[39-40]。使用前应做青霉素皮试,青霉素过敏者禁用。OK-432常用规格为 0.1 mg 稀释于 10 mL 0.9%氯化钠溶液,注入剂量与抽吸囊液相同体积,每次注射量不超过 20 mL。国产同类药物为沙培林,推荐配置及用量为 1 个临床单位沙培林稀释于 10 mL 0.9%氯化钠溶液,1 次注射不超过 2 个临床单位,注射前抽出等量囊液。

7.1.5 多西环素 多西环素于 1995 年首次用于治疗 LMs,并取得良好疗效 [41],具有不良反应少等特点,其后多年一直被用作硬化剂治疗 LMs。多西环素可诱导淋巴内皮细胞炎症反应,使其瘢痕化和皱缩,并抑制基质金属蛋白酶和血管内皮生长因子活性,致使胶原蛋白和纤维蛋白沉积,导致内皮细胞粘连和纤维化,从而治疗 LMs [42-43]。推荐配置及用量为 0.1 g 盐酸多西环素与 10 mL 0.9% 氯化钠溶液(或灭菌注射用水)或 5 mL 对比剂 +5 mL 0.9% 氯化钠溶液(或灭菌注射用水)或 5 mL 对比剂 +5 mL 0.9% 氯化钠溶液(或灭菌注射用水)组成的混合液,浓度为 10 mg/mL。使用剂量应根据病变抽吸液体积计算,推荐剂量为抽吸液体积的 1/3~1/2,单次给药总量不超过 250 mg。

7.1.6 曲安奈德 曲安奈德是一种长效糖皮质激素,通过有效抑制多种炎症介质如细胞因子、血小板源性生长因子 A 和 B、白细胞介素-6(IL-6)以及转化生长因子 β1 和 β3 从而显著抑制炎症反应,并减少淋巴组织肥大质量效应^[44]。其并发症较轻微,通常是发热及局部注射部位炎症反应^[45]。推荐配置及用量为:曲安奈德注射液与 0.9% 氯化钠溶液或注射用水配置成 5 mg/mL 浓度,将药物分散注射到病灶内,对微囊型 LMs 介入硬化疗效显著。儿童应用曲安奈德需注意使用剂量问题,一般每次 < 1 mg/kg,每次最大总量 < 10 mg。该药为混悬液,切忌注射到血管内,应避免发生栓塞。

7.1.7 硬化治疗技术 经皮穿刺病灶,建议全程在超声监视下进行,观察针体行进方向和针尖抵达深度,尽可能刺破囊腔内分隔,同时避开周边重要的神经血管组织;在超声监视下抽取囊液,显示无明显液性暗区后,再行药物注射治疗(液体硬化剂、泡沫硬化剂)。治疗过程中,尽量抽吸囊液以利于药物与内

皮细胞充分接触,从而更有效地发挥破坏作用。对于微囊型 LMs,超声监视下采用浸润性注射方法,见药物充分弥散、触及病变区略有张力时为止。对特殊部位病变(如唇面部),要注意注射技巧,避免过度治疗导致局部组织发育障碍,遗留远期萎缩凹陷并发症^[46]。在超声影像实时引导下进行注射操作,可直接了解病变内部情况,实现治疗过程精准可视化监测,以免误伤其他正常组织结构以及遗漏未治疗的囊腔。对于瘤体巨大 LMs,单纯注射药物往往效果欠佳,可采取置留引流管进行多次硬化或腔内灌洗治疗,以提高疗效^[47-48]。

7.1.8 硬化治疗不良反应防范及处理 ①发热:药 物引起的发热一般无需特殊治疗,治疗后 48~72 h 内多可自行消退。对于高热患者,可适当选用解热 镇痛药或糖皮质激素以缓解症状,亦可采取物理降 温方法加快其体表散热等,同时配合静脉补充液体, 加速药物排出,有利于退热。②疼痛、肿胀与坏死: 硬化治疗后早期可能会出现疼痛、肿胀、炎症反应 等,多数程度较轻,严重者可给予镇痛剂、冰袋冷敷、 抗生素等处理。轻度组织坏死、浅表溃疡大部分能 够自然愈合。严重的组织坏死多为硬化药物外溢导 致,建议超声引导下硬化治疗,可明显减少该类不良 反应发生。③肺部改变:博来霉素/平阳霉素使用过 度可导致肺毒性表现,出现胸痛、呼吸困难症状,并 能闻及湿啰音等。部分患者可出现非特异性肺炎和 肺纤维化,从而影响患者呼吸功能。因此,博来霉 素/平阳霉素使用一定要控制累积剂量,并建议在使 用前后进行肺功能评估。④过敏反应:硬化药物可 引起过敏反应,严重者可发生过敏性休克,危及生 命,术中应做好应急准备。对于既往有变态反应性 或癫痫发作史患者,应尽量避免使用博来霉素及平 阳霉素进行治疗。⑤其他:硬结出现原因可能与术 后无菌性炎症、病变纤维化及药物外溢有关。皮下 硬结可在1~2个月内自行消退,亦可给予外用多磺 酸黏多糖乳膏促使其消退;硬化治疗后皮肤表面可 出现色素沉着,可通过涂抹氢醌乳膏/积雪苷霜软膏 予以减轻。

7.2 外科手术治疗

任何 LMs 治疗目的均为防止功能缺陷并获得良好美学效果。以往认为手术切除是 LMs 最主要治疗手段。由于病灶常毗邻重要组织结构,切除难度高易出现各种手术相关并发症,且复发率高。随着新技术开展与应用,尤其是硬化治疗应用经验积累,LMs 疗效不断提高,能避免手术瘢痕,减少功能

缺陷影响风险^[20]。因此不再主张对各类 LMs 进行毫无选择性的手术切除。

目前得到认可的外科手术指征为[12]:①病灶局限,位置隐蔽,可完全切除的 LMs;②有症状的微囊型 LMs,硬化注射效果不佳;③硬化治疗后仍有症状的各型 LMs;④有危及生命的并发症;⑤对外观或功能影响较大的 LMs(如弥漫性肢体肥大等)。手术治疗 LMs,应尽可能切除病变组织,同时最大程度保护正常组织结构,维持其功能,尤其要高度重视对神经和血管的保护。对局限性巨囊型病变,可一次性彻底切除;对弥漫性病变,可采取分次、部分切除的治疗策略,以达到降低手术致畸率、改善外观、缓解症状的目的[49]。

7.3 消融、激光治疗

对于微囊型或难治性 LMs, 硬化治疗效果往往不能达到预期, 很多情况下病变仍然以手术切除为主, 但过多的组织切除对外观和功能影响较大。近年来, 物理治疗技术开始用于 LMs 治疗, 主要为微波消融、射频消融、激光[50-52]。消融的原理是利用热效应, 使病变局部升温, 致组织产生凝固坏死, 可显著减小 LMs 体积, 并改善疼痛、出血和感染等症状。消融治疗虽无法彻底治愈病变, 但可明显缓解症状[53-54]。需要注意对消融参数的选择和把握, 以免出现皮肤及软组织烫伤、缺血、坏死、脂肪液化等并发症。对于有皮肤黏膜病变的 LMs, 可采取 CO2激光治疗, 以气化病变组织或使病变淋巴管闭合, 有效改善症状及外观[52]。

7.4 口服雷帕霉素(西罗莫司)治疗

雷帕霉素(西罗莫司)是一种哺乳动物雷帕霉素 靶蛋白(mTOR)通路抑制剂,可减少内皮细胞的血 管内皮生长因子生成,调节血管生成、细胞增殖、迁 移和粘附,从而抑制 LMs 发生和发展[10,55]。对于 范围广泛、特殊部位(如气管周围、纵隔等) LMs,无 论手术还是硬化治疗均难以取得理想效果。近年有 学者报道口服西罗莫司治疗 LMs 取得了一定效果, 是难治性、复杂性或硬化/手术治疗失败 LMs 的一 种补充治疗选择[56-58]。不同年龄阶段患者对西罗 莫司药物代谢有所不同,治疗1周后根据血药浓度 调整药物剂量,维持西罗莫司药物谷浓度在5~ 15 ng/mL。病情改善患者继续治疗至少 12 个月。 西罗莫司主要不良反应包括口腔黏膜炎、高胆固醇 血症、头痛以及丙氨酸转氨酶(ALT)、天冬氨酸转 氨酶(AST)升高等,患者对于药物耐受性存在显著 个体差异。治疗期间,定期复查血常规、肝功能、凝 血指标及西罗莫司药物谷浓度。

8 随访

术后随访,以临床表现、MRI 或超声检查来评估疗效。标准如下:①治愈──LMs 病灶基本消失,外观恢复满意,随访至少 12 个月无复发。②显效──LMs 病灶体积明显缩小(≥75%),但不到100%,外观明显改善,需继续治疗。③有效──LMs 病灶体积缩小50%~75%,外观有改善,但不明显,需继续治疗。④无效──LMs 病灶体积增大或无变化,外观加重或无改善。

9 结论

LMs 是常见的低流速脉管畸形,可根据临床表现及影像学检查明确诊断。硬化治疗具有微创、有效、操作简便和并发症少等特点,已成为 LMs 一线治疗方案。对于病灶较小、边界清楚、位置较好或存在功能障碍的 LMs,可考虑手术切除。对于难治性和复杂性 LMs,则需根据患者实际病情和现有医疗技术条件,制订个体化治疗方案,力求达到最佳治疗效果。

[本共识审稿专家:郭 磊(山东大学附属儿童医 院)、张 靖(广东省人民医院)、范新东(上海交通大 学医学院附属第九人民医院)、秦中平(临沂市肿瘤 医院)、郑家伟(上海交通大学医学院附属第九人民 医院)、王延安(上海交通大学医学院附属第九人民 医院)、汪 松(安徽省儿童医院)、武玉睿(首都儿科 研究所附属儿童医院)、成 伟(首都医科大学附属 北京儿童医院)、李炯(徐州市儿童医院)、王作鹏 (复旦大学附属儿科医院)、郭晓楠(郑州大学第一附 属医院)、李海波(广州市妇女儿童医疗中心)、刘珍 银(广州市妇女儿童医疗中心)、郭建琴(海南大学附 属第一医院)、宋 丹(山东大学附属儿童医院)、 李 静(山东大学附属儿童医院)、周 洁(山东大学 附属儿童医院)、苗莉莉(山东大学附属儿童医院)、 刘 婷(山东大学附属儿童医院)、刘宝燕(山东大学 附属儿童医院)、何 昀(重庆医科大学附属儿童医 院)、顾 松(上海交通大学医学院附属上海儿童医 学中心)、袁 华(江西省儿童医院)、白海亚(甘肃省 妇幼保健院)、杨晓楠(中国医学科学院整形外科医 院)、刘海金(赣南医科大学第一附属医院)、王怀杰 (西安国际医学中心医院)、李嘉朋(佛山市第一人民

医院)、龚忠诚(新疆医科大学口腔医学院)、李 勇 (湖南省儿童医院)、蔡 育(武汉大学口腔医院)、江 成鸿(福建医科大学附属协和医院)。主要执笔: 郭 磊、宋 丹(山东大学附属儿童医院)

「参考文献]

- [1] Poget M, Fresa M, El Ezzi O, et al. Lymphatic malformations in children; retrospective review of surgical and interventional management[J]. Pediatr Surg Int, 2022, 39:36.
- [2] Schoinohoriti OK, Theologie-Lygidakis N, Tzerbos F, et al. Lymphatic malformations in children and adolescents [J]. J Craniofac Surg, 2012, 23:1744-1747.
- [3] 吴 江,黄庆荣,汪根树,等.小儿淋巴管瘤病理性质的探讨 [J].中华小儿外科杂志,2002,23;568-569.
- [4] Osborn AJ, Dickie P, Neilson DE, et al. Activating PIK3CA alleles and lymphangiogenic phenotype of lymphatic endothelial cells isolated from lymphatic malformations [J]. Hum Mol Genet, 2015, 24;926-938.
- [5] Blesinger H, Kaulfuß S, Aung T, et al. PIK3CA mutations are specifically localized to lymphatic endothelial cells of lymphatic malformations[J]. PLoS One, 2018, 13:e0200343.
- [6] Zenner K, Cheng CV, Jensen DM, et al. Genotype correlates with clinical severity in PIK3CA-associated lymphatic malformations[J]. JCI Insight, 2019, 4:e129884.
- [7] Luks VL.Kamitaki N, Vivero MP, et al. Lymphatic and other vascular malformative/overgrowth disorders are caused by somatic mutations in PIK3CA[J]. J Pediatr, 2015, 166:1048-1054, e1-5.
- [8] Ichise T, Yoshida N, Ichise H. H-, N- and Kras cooperatively regulate lymphatic vessel growth by modulating VEGFR3 expression in lymphatic endothelial cells in mice [J]. Development, 2010, 137:1003-1013.
- [9] Hominick D.Silva A.Khurana N.et al. VEGF-C promotes the development of lymphatics in bone and bone loss[J]. Elife, 2018.7:e34323.
- [10] 张 丹. 血清外泌体 miR-202-3p 介导内皮细胞损伤在主动脉 夹层发病中的作用及机制研究 [D]. 新疆: 新疆医科大学,2024.
- [11] Han T, Yan J, Chen H, et al. HIF-1α contributes to tube malformation of human lymphatic endothelial cells by upregulating VEGFR-3[J]. Int J Oncol, 2019, 54:139-151.
- [12] 中华医学会整形外科分会血管瘤脉管畸形学组.血管瘤与脉管畸形诊治指南(2024版)[J].组织工程与重建外科杂志,2024,20:1-50.
- [13] Perkins JA, Manning SC, Tempero RM, et al. Lymphatic malformations: current cellular and clinical investigations[J]. Otolaryngol Head Neck Surg, 2010, 142:789-794.
- [14] Friedman SL, Neuschwander-Tetri BA, Rinella M, et al.

 Mechanisms of NAFLD development and therapeutic strategies[J]. Nat Med, 2018, 24:908-922.

- [15] Wassef M, Blei F, Adams D, et al. Vascular Anomalies Classification: Recommendations From the International Society for the Study of Vascular Anomalies[J]. Pediatrics, 2015,136:e203-214.
- [16] Hill RH 3rd, Shiels WE 2nd, Foster JA, et al. Percutaneous drainage and ablation as first line therapy for macrocystic and microcystic orbital lymphatic malformations [J]. Ophthalmic Plast Reconstr Surg, 2012, 28:119-125.
- [17] Wiegand S. Wichmann G. Dietz A. et al. Association between malformation type, location and functional deficits in lymphatic malformations of the head and neck in children[J]. Eur Arch Otorhinolaryngol, 2023, 280; 2535-2540.
- [18] 贾玉林,赵怡芳. 舌下腺囊肿的诊断与鉴别诊断[J]. 中国实用口腔科杂志,2019,12;65-68.
- [19] 王德明,苏立新,范新东.静脉畸形中国专家共识[J]. 介入放射学杂志,2019,28;307-311.
- [20] Parashar G, Shankar G, Sahadev R, et al. Intralesional Sclerotherapy with bleomycin in lymphatic malformation of tongue an institutional experience and outcomes[J]. J Indian Assoc Pediatr Surg, 2020, 25:80-84.
- [21] Honnorat M, Viremouneix L, Ayari S, et al. Early adjuvant medication with the mTOR inhibitor sirolimus in a preterm neonate with compressive cystic lymphatic malformation[J]. Front Pediatr, 2020, 8:418.
- [22] Giacalone G. Yamamoto T. Belva F. et al. The application of virtual reality for preoperative planning of lymphovenous anastomosis in a patient with a complex lymphatic malformation[J]. J Clin Med, 2019, 8:371.
- [23] 李 洁,郑明明.产前图像学和遗传学筛查与诊断工作常规 [M].江苏科学技术出版社,2023.
- [24] Fernandes S, Yeung P, Heran M, et al. Sclerosing agents in the management of lymphatic malformations in children; a systematic review[J]. J Pediatr Surg, 2022, 57:888-896.
- [25] Sun J, Wang C, Li J, et al. The efficacy of bleomycin sclerotherapy in the treatment of lymphatic malformations: a review and meta-analysis[J]. Braz J Otorhinolaryngol, 2023, 89:101285.
- [26] Chaudry G, Guevara CJ, Rialon KL, et al. Safety and efficacy of bleomycin sclerotherapy for microcystic lymphatic malformation[J]. Cardiovasc Intervent Radiol, 2014, 37: 1476-1481.
- [27] Bhatnagar A, Upadhyaya VD, Kumar B, et al. Aqueous intralesional bleomycin sclerotherapy in lymphatic malformation:Our experience with children and adult[J]. Natl J Maxillofac Surg, 2017, 8:130-135.
- [28] 劳永浩,李 龙. 博莱霉素类药物硬化疗法在囊肿性疾病中的应用[J]. 介入放射学杂志,2019,28:92-97.
- [29] 中华口腔医学会口腔颌面外科专业委员会脉管性疾病学组. 平阳霉素治疗脉管性疾病规范[J]. 中国口腔颌面外科杂志, 2011,9:68-69.
- [30] 赵冉冉,李晨曦,热孜万古丽·亚森,等. 负压封闭引流在颌面 颈部间隙感染致下行性坏死性纵隔炎治疗中的应用效果评价

- [J]. 中国口腔颌面外科杂志,2024,22:153-157.
- [31] 中华口腔医学会口腔颌面外科专业委员会脉管性疾病学组. 聚桂醇硬化剂治疗口腔颌面部血管瘤和脉管畸形专家共识 [J]. 中国口腔颌面外科杂志,2018,16;275-278.
- [32] 中国微循环学会周围血管疾病专业委员会血管瘤与脉管畸形专家委员会,中国医师协会介入医师分会妇儿介入学组,中国血管瘤血管畸形协作网,等.聚多卡醇硬化治疗血管瘤与脉管畸形中国专家共识[J].血管与腔内血管外科杂志,2023,9:1281-1287.
- [33] Yamaki T, Sasaki Y, Hasegawa Y, et al. Percutaneous ultrasound-guided sclerotherapy with polidocanol microfoam for lymphatic malformations[J]. J Vasc Surg Venous Lymphat Disord, 2017, 5:707-714.
- [34] 宋 丹,郭 磊,王 亮,等.超声引导下经皮注射聚桂醇泡沫 硬化剂治疗儿童淋巴管畸形的临床疗效及安全性分析[J]. 医学影像学杂志,2024,34:108-111.
- [35] Tessari L, Cavezzi A, Frullini A. Preliminary experience with a new sclerosing foam in the treatment of varicose veins [J]. Dermatol Surg, 2001, 27:58-60.
- [36] Impellizzeri P.Romeo C.Borruto FA.et al. Sclerotherapy for cervical cystic lymphatic malformations in children. Our experience with computed tomography-guided 98% sterile ethanol insertion and a review of the literature[J]. J Pediatr Surg, 2010, 45: 2473-2478.
- [37] Gilat EK, Cohen I, Brin D, et al. A 14-year single-center experience evaluating sclerotherapy efficacy in lymphatic malformations [J]. J Vasc Surg Venous Lymphat Disord, 2024,12:101938.
- [38] 韩一峰,范新东.无水乙醇介入治疗头颈部囊性病变的临床应 用现状[J].中国口腔颌面外科杂志,2015,13;187-189.
- [39] Fernandes S, Yeung P, Heran M, et al. Sclerosing agents in the management of lymphatic malformations in children: a systematic review[J]. J Pediatr Surg, 2022, 57:888-896.
- [40] Sun J, Wang C, Song D, et al. Efficacy of OK-432 sclerotherapy for different types of lymphangiomas: a review and meta-analysis[J]. Braz J Otorhinolaryngol, 2023, 89:101270.
- [41] Molitch HI, Unger EC, Witte CL, et al. Percutaneous sclerotherapy of lymphangiomas [J]. Radiology, 1995, 194: 343-347.
- [42] Shaye DA, Burks CA, Gadkaree SK, et al. Self-compounded doxycycline sclerotherapy for the treatment of lymphatic malformations in low-resource settings [J]. World J Surg, 2020,44:3616-3619.
- [43] 时 豪,吕志宝,陈 舟.多西环素注射治疗儿童大囊型和混合型囊性淋巴管畸形的疗效与安全性探讨[J].临床小儿外科杂志,2022,21:558-561.
- [44] July J, Peeters S. Preoperative intralesional injection of triamcinolone acetonide for a large head and neck lymphangioma in a baby: a case report[J]. Paediatrica

- Indonesiana, 2018, 57: 274-278.
- [45] Luo QF, Gan YH. Pingyangmycin with triamcinolone acetonide effective for treatment of lymphatic malformations in the oral and maxillofacial region[J]. J Craniomaxillofac Surg, 2013,41:345-349.
- [46] 邰茂众,陈 涛,李克雷,等.2 种病变内平阳霉素注射方法治疗 68 例儿童唇面部微囊型淋巴管畸形疗效分析[J].中国口腔颌面外科杂志,2022,20;268-272.
- [47] 宋 丹,郭 磊,李 静,等.聚桂醇腔内灌洗联合低浓度平阳 霉素治疗儿童大囊型淋巴管畸形的临床观察[J]. 中华整形外 科杂志,2020,36:392-397.
- [48] 陈昆山,张 靖,申 刚,等. 猪尾引流导管在淋巴管畸形硬化 治疗中的应用及疗效分析[J]. 介入放射学杂志,2016,25: 106-110.
- [49] 王延安,秦中平,郑家伟,等.头颈部血管瘤及脉管畸形手术治疗专家共识[J].中国口腔颌面外科杂志,2024,22:105-117.
- [50] Lisan Q, Villepelet A, Parodi M, et al. Value of radiofrequency ablation in the management of retropharyngeal lymphatic malformation [J]. Int J Pediatr Otorhinolaryngol, 2016, 83: 37-40.
- [51] Khurana A, Gupta A, Ahuja A, et al. Lymphangioma circumscriptum treated with combination of bleomycin sclerotherapy and radiofrequency ablation[J]. J Cosmet Laser Ther, 2018, 20:326-329.
- [52] Shumaker PR, Dela Rosa KM, Krakowski AC. Treatment of lymphangioma circumscriptum using fractional carbon dioxide laser ablation[J]. Pediatr Dermatol, 2013, 30:584-586.
- [53] Kim SW, Kavanagh K, Orbach DB, et al. Long-term outcome of radiofrequency ablation for intraoral microcystic lymphatic malformation[J]. Arch Otolaryngol Head Neck Surg, 2011, 137;1247-1250.
- [54] Thottam PJ, Al-Barazi R, Madgy DN, et al. Submucosal resection of a microcystic oropharyngeal lymphatic malformation using radiofrequency ablation[J]. Int J Pediatr Otorhinolaryngol, 2013, 77:1589-1592.
- [55] Teng J, Hammill A, Martini J, et al. Sirolimus in the treatment of microcystic lymphatic malformations: a systematic review [J]. Lymphat Res Biol, 2023, 21:101-110.
- [56] Wu C, Song D, Guo L, et al. Refractory head and neck lymphatic malformation in infants treated with sirolimus; a case series[J]. Front Oncol, 2021, 11;616702.
- [57] 孔亮亮,韩 涛,高庆文,等. 口服西罗莫司治疗难治性脉管性疾病的有效性与安全性[J]. 中华整形外科杂志,2020,36:487-493.
- [58] Freixo C, Ferreira V, Martins J, et al. Efficacy and safety of sirolimus in the treatment of vascular anomalies: a systematic review[J]. J Vasc Surg, 2020, 71:318-327.

(收稿日期:2025-01-23) (本文编辑:谷 珂)